19. Xie, X.; Li, X. M.; Qin, F.; Lin, J.; Zhang, G.; Zhao, J.; Bao, X.; Zhu, R.; Song, H.; Li, X. D.; Chen, P. R. Genetically Encoded Photoaffinity Histone Marks. J. Am. Chem. Soc. Article ASAP, DOI: 10.1021/jacs.7b01431

18. Cui, Y. W.; Li, X; Lin, J. W.; Hao, Q.; Li, X. D. Histone Ketoamide Adduction by 4-Oxo-2-nonenal Is a Reversible Posttranslational Modification Regulated by Sirt2. ACS Chem. Biol. 2017, 12, 47-51.​​
17. Yang, T. P.; Li, X. M.; Bao, X. C.; Fung, Y. M. E.; Li, X. D. Photo-lysine Captures Proteins that Bind Lysine Post-translational Modifications. Nat. Chem. Biol. 2016, 12, 70-72.

16. Yang, T. P.; Liu, Z.; Li, X. D. Developing Diazirine-based Chemical Probes to Identify Histone Modification ‘Readers’ and ‘Erasers’. Chem. Sci. 2015, 6, 1011-1017.

15. Liu, Z.; Yang, T. P.; Li, X.; Peng, T.; Hang, H. C.; Li, X. D. Integrative Chemical Biology Approaches for Identification and Characterization of “Erasers” for Fatty-Acid-Acylated Lysine Residues within Proteins. Angew. Chem. Int. Edit. 2015, 54, 1149-1152.
14. Li, X.; Li, X. D. Chemical proteomics approaches to examine novel histone posttranslational modifications. Curr. Opin. Chem. Biol. 2015, 24, 80-90.
13. Bao, X. C.; Wang, Y.; Li, X.; Li, X. M.; Yang, T. P.; Wong, C. F.; Zhang, J. W.; Hao, Q.; Li, X. D. Identification of ‘Erasers’ for Lysine Crotonylated Histone Marks Using a Chemical Proteomics Approach. eLife. 2014, 3, e02999.

12. Bao, X. C.; Zhao, Q.; Yang, T. P.; Fung, Y. M. E.; Li, X. A Chemical Probe for Lysine Malonylation. Angew. Chem. Int. Edit. 2013, 52, 4883-4886.

Before HKU
11. Shen, B.; Li, X.; Wang, F.; Yao, X. Q.; Yang, D. A Synthetic Chloride Channel Restores Chloride Conductance in Human Cystic Fibrosis Epithelial Cells. PLoS One. 2012, 7, e34694.
10. Li, X.; Foley, E. A.; Molloy, K. R.; Li, Y. Y.; Chait, B. T.; Kapoor, T. M. Quantitative Chemical Proteomics Approach To Identify Post-translational Modification-Mediated Protein–Protein Interactions. J. Am. Chem. Soc. 2012, 134, 1982-1985.
9. Li, X.; Kapoor, T. M. An Optical Switch for a Motor Protein. ChemBioChem. 2011, 12, 2265-2260.
8. Wacker, S. A.; Kashyap, S.; Li, X.; Kapoor, T. M. Examining the Mechanism of Action of a Kinesin Inhibitor Using Stable Isotope Labeled Inhibitors for Cross-Linking (SILIC). J. Am. Chem. Soc. 2011, 133, 12386-12389.
7. Li, X.; Kapoor, T. M. Approach to Profile Proteins That Recognize Post-Translationally Modified Histone “Tails”. J. Am. Chem. Soc. 2010, 132, 2504-2505.
6. Li, X.; Shen, B.; Yao, X. Q.; Yang, D. Synthetic Chloride Channel Regulates Cell Membrane Potentials and Voltage-Gated Calcium Channels. J. Am. Chem. Soc. 2009, 131, 13676-13680.
5. Li, X.; Wu, Y. D.; Yang, D. Alpha-aminoxy Acids: New Possibilities from Foldamers to Anion Receptors and Channels. Accounts Chem. Res. 2008, 41, 1428-1438.
4. Li, X.; Shen, B.; Yao, X. Q.; Yang, D. A Small Synthetic Molecule Forms Chloride Channels to Mediate Chloride Transport across Cell Membranes. J. Am. Chem. Soc. 2007, 129, 7264-7265.
3. Li, X.; Yang, D. Peptides of Aminoxy Acids as Foldamers. Chem. Commun. 2006, 32, 3367-3379.
2. Yang, D.; Li, X.; Fan, Y. F.; Zhang, D. W. Enantioselective Recognition of Carboxylates:  A Receptor Derived from α-Aminoxy Acids Functions as a Chiral Shift Reagent for Carboxylic Acids. J. Am. Chem. Soc. 2005, 127, 7996-7997.
1. Yang, D.; Li, X.; Sha, Y.; Wu, Y. D. A Cyclic Hexapeptide Comprising Alternating α-Aminoxy and α-Amino Acids is a Selective Chloride Ion Receptor. Chem. Eur. J. 2005, 11, 3005-3009.​